Screw Removal Instruments Information And Instructions

Product Description
The OBOMET3 Screw Removal Instruments are designed to facilitate the removal of broken screws from dental implants.

Contents
The Screw Removal Instruments Available:
- (1) Drill Guide and Handle
- (1) 1.00mm diameter Reverse Latch Drill to fit a handpiece
- (1) 1.04mm diameter Left Hand Drill – Silver Handle
- (1) 1.18mm diameter Left Hand Drill – Bronze Handle

Indications
The Screw Removal Instruments are used to retrieve screws that are broken below the occlusal surface of the implant and cannot be removed using other techniques. The instruments would be used when a burr, metal shaving or other defect on the broken surface of the screw prevents it from being easily removed.

Contraindications
There are no absolute contraindications however, broken screws, which protrude above the occlusal surface of the implant that can be gripped with a hemostat or slotted instrument, should be removed with such instruments. A broken screw is a salvage situation. The Screw Removal Instruments may not be 100% effective in retrieving a broken screw.

Cleaning and Sterilization
Screw Removal Instruments are reusable, they must be cleaned and sterilized prior to use. Refer to P-IFSCSS for complete information.

Caution: The Screw Removal Instruments are made of carbon steel. If a drill is broken off inside the implant without being retrieved, removal of the implant may be necessary.

Directions For Use
1. If not already removed, the abutment or any other restorative components must be removed from the implant containing the broken screw. There must be an opening in the tissue of adequate size and shape to allow seating of a 4.5mm diameter abutment on the implant. The Drill Guide used is also 4.5mm in diameter.

2. Place the reverse drill with a latch type shank into a low speed handpiece capable of being regulated to approximately 200-400rpm. Make sure the handpiece motor is in reverse so that the drill rotates in a counter clockwise direction.

3. The handle end Drill Guide has an internal hex, which will fit over the male hex on the implant. Holding the handle in one hand, place the hexed end of the Drill Guide over the implant. With a light pressure on the handle, rotate the Drill Guide until it fits and is seated over the hex on the implant. Make sure the Drill Guide is held so that its longitudinal axis is parallel to the implant.
Screw Removal Instruments Information And Instructions
(continued)

4. Holding the Drill Guide firmly over the implant and using copious external irrigation, insert the reverse drill through the hole on the superior end of the Drill Guide. With the handpiece rotating in reverse at 200-400rpm, continue to insert the drill until it engages the broken screw. Apply light to medium pressure on the handpiece so that the drill will begin to cut into the superior surface of the broken screw. Continue to apply irrigation during this step.

5. To avoid heat build-up in the implant; do not drill more than 8 to 10 seconds at a time, applying irrigation between drilling intervals to keep the implant cool. This process may have to be repeated several times to prepare a hole in the screw.

6. In many cases, the cutting action of the drill will cause the screw to move and begin to thread itself out of the implant. If this happens, reduce pressure on the handle and Drill Guide and apply only light pressure on the handpiece, allowing the screw to thread itself completely out of the implant.

7. Should the screw remain lodged in the implant, repeat the drilling described in the above paragraphs. The object is to drill a hole in the center of the broken screw approximately 1.0mm deep. The drill guide has an internal stop, which prevents over penetration of the drill.

8. If the screw remains in place after a hole has been drilled through the longitudinal axis of the broken screw, the Hand Drills are designed to provide additional torque for final removal. Use the 1.04mm Hand Drill (silver colored handle) first. If it will not grip the screw due to the internal hole being too large, substitute the 1.18mm Hand Drill (bronze colored handle).

9. Insert the drill end into the internal implant thread, being careful to engage the hole previously drilled in the broken screw. Apply light pressure in the apical direction and slowly rotate the Hand Drill counter clockwise. The drill should wedge itself into the previously generated hole and apply additional removal torque to the screw, removing the screw from the implant. Please note that the success of this step depends upon the drill entering the hole in the screw. If the 1.04mm Drill fails to remove the screw and it appears to be too small to wedge into the drilled hole, the 1.18mm Drill may be used.

10. Should both of the hand drills fail to remove the screw, other instruments may be tried. For example, a small round burr slightly larger than the drilled hole may be used successfully.

11. Once the screw has been removed, it is important to examine the internal threads of the implant to determine if these have been damaged. The best method of performing this inspection is to thread an Implant Guide Pin (WSK30) into the implant. The Guide Pin should thread into the implant with little or no resistance realizing that some resistance may occur because of minor damage to the threads.

12. If significant thread damage has occurred to the implant threads, the implant may need to be removed.

This instrument is not guaranteed to be capable of removing all broken abutment screws and should be used with extreme care. The decision to use this instrument is entirely at the discretion of the clinician. For technical support or more information please contact BIOMET 3I at 800-342-5454.